
3-MANIFOLDS, TRIANGULATIONS, AND VOLUME COMPUTATIONS
PROJECT DESCRIPTION

CHRISTIAN ZICKERT

1. In brief

Goals: Below is a summary of our goals.

• Understand the basics of triangulations, and how they can be used to compute
invariants such as the set of representation volumes.
• Get acquainted with various mathematics software to be used throughout the
project.
• Write new software tools to investigate a conjecture stating that all representation
volumes are linear combinations of hyperbolic volumes.
• Make all software, databases, and findings of our investigation publically available.

Software: We will use the software listed below. You are strongly encouraged (expected!)
to install the software and play around with it before we begin.

SnapPy: Software for computing invariants of hyperbolic manifolds. It includes a census
of triangulated hyperbolic manifolds that can be created from 8 simplices or less,
and also a census of link complents. Available at http://www.math.uic.edu/
t3m/SnapPy/. Check out the video tutorials.

Snap: Software for number theoretic invariants of hyperbolic manifolds. Available at
http://unhyperbolic.org/snap/.

Pari/GP: General software for number theory, available at http://pari.math.u-bordeaux.
fr/.

Sage: A unified interface between various math software. Both Pari/GP and SnapPy
can be used with Sage. Available at http://www.sagemath.org/

Theory: Much of the theory can be found in the references below. We only have 8 weeks,
so don’t expect to understand all of the theory. To do research one often does not need
to know all aspects of the theory, only the part that is relevant for the problem at hand!

[1]: Basic theory of hyperbolic manifolds. Chapter E.5-ii, deals with Thurston’s gluing
equations.

[6]: A very readable description of how to triangulate a link complement.
[4]: Chapter 0 gives a brief summary of the number theory needed. We will also

need some results from Chapter 3 about number fields associated to hyperbolic
manifolds.

[2]: A simple introduction to Ptolemy coordinates with many examples.
1

http://www.math.uic.edu/t3m/SnapPy/
http://www.math.uic.edu/t3m/SnapPy/
http://unhyperbolic.org/snap/
http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/
http://www.sagemath.org/

2 CHRISTIAN ZICKERT

2. Background, examples, and plan of action

By the end of the 8 weeks, the goal is to have built a comprehensive database of shape
fields, and of examples of Neumann’s conjecture. All results will be made publically
available at http://ptolemy.unhyperbolic.org/, and you will become participants of
CURVE, http://curve.unhyperbolic.org/index.html.

It is only very recently that the proper software tools for studying representation vol-
umes have been developed. You will thus be doing cutting edge research. The better
prepared you are, the more we will achieve, so I strongly recommend that you start
working before we officially begin. The programming exercises can be done without fully
understanding the theory. The most important ones are Exercises 2.34 and 2.44. See
Section 2.6 for general SnapPy tips.

2.1. Basics of triangulations. Every 3-manifold is homeomorphic to one obtained by
gluing together simplices. A 3-manifold can thus be encoded by specifying the faces that
are glued and the permutation of the gluing (see Figure 1). The manifold pictured is
homeomorphic to the complement of the figure 8 knot, and in general, one has a simple
algorithm for triangulating a link complement [6]. The software Plink, which is part of
SnapPy, allows you to draw a link and create the corresponding triangulation file. A
triangulation file looks like in http://regina.sourceforge.net/docs/foreign.html#
import-snappea.

0 2

31

0
2

31
0123
3012

0123
0132

0123
2103

a

d

c

0123
3201

b

Figure 1. Triangulation of the
census manfold m004.

Figure 2. The figure 8 knot.

2.1.1. Censuses. SnapPy has several different censuses of 3-manifolds (see http://www.
math.uic.edu/t3m/SnapPy/censuses.html). We shall mainly use the following:

• OrientableCuspedCensus: Hyperbolic manifolds with 2-5, 6, 7, and 8 simplices;
typical names: m049, s509, v2079, t12313.
• LinkExteriors: Knots with at most 11 crossings and links with at most 10 cross-
ings; typical names: 5_3 and 10^2_71.
• HTLinkExteriors: Knots and links with up to 14 crossings; typical names: K10a122,
K11n54, L13a2110, L14n71 (K for knot, L for link, a for alternating, n for non-
alternating).

http://ptolemy.unhyperbolic.org/
http://curve.unhyperbolic.org/index.html
http://regina.sourceforge.net/docs/foreign.html#import-snappea
http://regina.sourceforge.net/docs/foreign.html#import-snappea
http://www.math.uic.edu/t3m/SnapPy/censuses.html
http://www.math.uic.edu/t3m/SnapPy/censuses.html

3-MANIFOLDS, TRIANGULATIONS, AND VOLUME COMPUTATIONS PROJECT DESCRIPTION 3

Example 2.1. Here is how to load a census manifold in SnapPy, and to save the trian-
gulation to a file.
SnapPy
>>> M=Manifold("m019") \\ Loads the census manifold m019 and calls it M.
>>> M.save(’/some_directory/m019.trig’) \\ saves the triangulation to a file.

Exercise 2.2. Create triangulation files for each manifold of each census, and save them
in appropriate directories (write a script, don’t do it one manifold at a time).

2.2. Gluing equations and volume. The gluing equations are polynomial equations
designed to construct a hyperbolic structure on a triangulated 3-manifold M . The idea
is that a hyperbolic structure on a simplex is determined by a single complex number,
and for the hyperbolics structures to glue together to a hyperbolic structure on M , the
complex numbers must satisfy a system of polynomial equations. The gluing equations
are desribed in [1, E.5-ii]. They have the form

(2.1)
n∏

i=1

z
Aji

i (1− zi)Bji = εj,

where the zi’s are variables (called shape coordinates, shapes, or cross-ratios), n is the
number of simplices, εj is a sign, and [A|B] is a matrix with 2n columns.

Example 2.3.
SnapPy
>>> M=Manifold("m004") # Loads the manifold m004
>>> M.gluing_equations() # Displays the gluing equation matrix.
[([2, -1], [-1, 2], 1),
([-2, 1], [1, -2], 1),
([1, 0], [0, 1], 1),
([0, -2], [0, 4], 1)]
This means that the gluing equations are:

(2.2)

z21(1− z1)−1z−12 (1− z2)2 =1

z−21 (1− z1)1z12(1− z2)−2 =1

z21(1− z1)0z02(1− z2)1 =1

z01(1− z1)0z−22 (1− z2)4 =1.

Remark 2.4. Each solution to the gluing equations gives rise to a homomorphism (called
a representation)

(2.3) π1(M)→ PSL(2,C),

where π1(M) is the fundamental group of M .

Definition 2.5. A solution to the gluing equations where all shapes zi are positive is
called a geometric solution.

4 CHRISTIAN ZICKERT

Theorem 2.6. A geometric solution determines a (complete) hyperbolic structure on M .
Furthermore, we have

(2.4) Vol(M) =
n∑

i=1

D(zi),

where D is the function defined by

(2.5) D(z) = Im(Li2(z)) + arg(1− z) log |z|, Li2(z) =

∫ 1

0

log(1− tz)
t

dt.

�

Remark 2.7. If a geometric solution exists, it is unique. This is a consequence of a result
known as Mostow rigidity, which states that (complete) hyperbolic structures are unique
in dimension 3 and higher.

Example 2.8.
SnapPy
>>> M=Manifold(’m023’);
>>> M.volume() # Computes the volume of M.
2.9441064867

Exercise 2.9. Create a file containing all manifolds in OrientableCuspedCensus and
their volumes.

Exercise 2.10. Which link (in LinkExteriors and HTLinkExteriors) has the largest
volume?

The definition below is motivated by (2.4).

Definition 2.11. For a solution z1, . . . , zn to the gluing equations (corresponding to a
representation ρ, c.f. Remark 2.4) one can define the volume (of ρ) as

∑n
i=1D(zi).

Example 2.12. One easily checks that the gluing equations (2.2) are equivalent to the
equations

(2.6) z1 = z2, z21 − z1 + 1 = 0.

We thus have two solutions

(2.7) z1 = z2 =
1 +
√
−3

2
, z1 = z2 =

1−
√
−3

2
,

The first solution is geometric, so by by Theorem 2.6, we have

(2.8) Vol(m004) = 2D

(
1 +
√
−3

2

)
= 2.02988321282...

Similarly, the other solution has volume 2D(1−
√
−3

2
) = −2.02988321282...

Example 2.13. Let’s compute the shapes for the geometric solution to the gluing equa-
tions of the knot 7_2 (see http://katlas.math.toronto.edu/wiki/7_2 for a picture.)

http://katlas.math.toronto.edu/wiki/7_2

3-MANIFOLDS, TRIANGULATIONS, AND VOLUME COMPUTATIONS PROJECT DESCRIPTION 5

SnapPy
>>> M=Manifold(’7_2’)
>>> M.tetrahedra_shapes(part=’rect’)
[0.97968392714 + 0.59056955984*I, # value of z_1
0.25132270106 + 0.45131497073*I, # value of z_2
0.0581813774 + 1.6912791495*I, # value of z_3
1.1636911715 + 0.5641856323*I] # value of z_4

>>> M.volume()
3.3317442316
You should check that the gluing equations really are satisfied. You can double check
that the volume is correct e.g. using Pari/GP as follows:
Pari/GP
>>> D(z)=imag(dilog(z))+arg(1-z)*log(abs(z)); # Defines the function D
>>> v_1=D(0.97968392714 + 0.59056955984*I);
>>> v_2=D(0.25132270106 + 0.45131497073*I);
>>> v_3=D(0.0581813774 + 1.6912791495*I);
>>> v_4=D(1.1636911715 + 0.5641856323*I);
>>> v_1+v_2+v_3+v_4
3.3317442316447718071859581687299307457

Exercise 2.14. Use SnapPy to write down the gluing equations for the knot complement
5_2. Solve these by hand (you should get 3 solutions). Compute the volume of each of
them using Pari/GP (you should get 0 and ±Vol(52)).

Remark 2.15. Solving the gluing equations is difficult. SnapPy tries to find a geometric
solution numerically, and computes the volume using (2.4). It neither computes the other
solutions, nor their volumes. To do this we need Ptolemy coordinates.

2.3. Ptolemy coordinates. The Ptolemy coordinates are another way of computing
representations, which were invented recently by Garoufalidis-Thurston-Zickert [3]. Every
solution to the gluing equations corresponds to a solution to the Ptolemy equations and
vice versa. One obtains a system of equations by assigning a variable to each edge of each
simplex, and an equation to each simplex. Each equation has the form
(2.9) c03c12 + c01c23 = c02c13,

where the cij’s are the variables assigned to the edges (see Figure 3). We also stipulate
that if two edges are identified in the manifold, the Ptolemy coordinates must be equal
up to a sign depending on the vertex ordering. One can always assume that one of the
Ptolemy coordinates is 1. We refer to the set of Ptolemy equations as the Ptolemy variety.

The Ptolemy coordinates have several advantages over the shape coordinates including
• Equations are easy to write down and are always homogeneous of degree 2.
• Solutions are easy to compute.
• Computations can be done for other solutions than the geometric one using the
Ptolemy module http://ptolemy.unhyperbolic.org/ (part of SnapPy).
• The Ptolemy coordinates generalize to representations in SL(n,C) (the shape co-
ordinates also generalize, but we shall not need this).

http://ptolemy.unhyperbolic.org/

6 CHRISTIAN ZICKERT

The disadvantage is that they are less geometric, but let’s not care about that.

1

0

3

2c02

c23c01 c12

c03

c13

0 2

31

0 2

31
b −b

−b

−a−a
b

a

b

a
a

−a
−b

Figure 3. Ptolemy coordi-
nates on a simplex.

Figure 4. Triangulation of m003
with Ptolemy coordinates.

Example 2.16. For the triangulation in Figure 4, we have

(2.10) ab+ a2 − b2 = 0, ab+ a2 − b2 = 0, b = 1,

which is equivalent to the system

(2.11) b = 1, a2 + a− 1 = 0.

Hence, there are two solutions, both defined over Q(
√
5).

We refer to [2, Sec 3] for an explanation of the theory, and for more examples.

Remark 2.17. Typically (although not always), the solutions come in families (called
components) such that for each component, each variable (shape or Ptolemy coordinate)
has the form qi(x), where qi(x) is a polynomial, and x is a root of an irreducible polynomial
p. In particular, each component determines a number field (see Section 2.4).

The Ptolemy variety is stratified by so-called obstruction classes (we will not attempt
to understand these). We illustrate the Ptolemy variety, and how to obtain components
of solutions, by an example.

Example 2.18.
SnapPy
>>> M=Manifold(’m098’);
>>> M.num_tetrahedra()
5 # M has 5 simplices.
>>> PtVars=M.ptolemy_variety(2,’all’); # All obstruction classes
>>> len(PtVars) # Length of a list
2 # 2 obstruction classes.
>>> Var0=PtVars[0];Var1=PtVars[1];
>>> for e in Var0.equations:
... print e # Prints Ptolemy equations for Obstruction class 0.
c_0011_0 * c_0011_2 - c_0011_0 * c_0101_0 + c_0101_0^2
c_0011_0 * c_0011_2 - c_0011_0 * c_0101_0 + c_0101_0^2

3-MANIFOLDS, TRIANGULATIONS, AND VOLUME COMPUTATIONS PROJECT DESCRIPTION 7

c_0011_0 * c_0101_3 + c_0011_2^2 - c_0101_0^2
c_0011_2^2 + c_0101_0 * c_0101_4 - c_0101_3^2
- c_0011_2 * c_0101_3 - c_0101_3^2 + c_0101_4^2
- 1 + c_0011_0
>>> for e in Var1.equations:
... print e # Prints Ptolemy equations for Obstruction class 1.
c_0011_0 * c_0011_2 + c_0011_0 * c_0101_0 - c_0101_0^2
c_0011_0 * c_0011_2 + c_0011_0 * c_0101_0 - c_0101_0^2
c_0011_0 * c_0101_3 + c_0011_2^2 - c_0101_0^2
c_0011_2^2 + c_0101_0 * c_0101_4 - c_0101_3^2
- c_0011_2 * c_0101_3 - c_0101_3^2 + c_0101_4^2
- 1 + c_0011_0
If you have Sage installed, you can compute the solutions.
>>> Sols0=Var0.compute_solutions()
>>> len(Sols0)
2 # 2 components of solutions
>>> Sols0_0=Sols0[0];Sols0_1=Sols0[1];
>>> Sols0_0
{’c_0011_0’: 1, # value of the coordinate c_0011_0 is 1
’c_0011_1’: -1,
’c_0011_2’: -1,
’c_0011_3’: 1,
’c_0011_4’: -1,
’c_0101_0’: Mod(x, x^2 - x - 1),
’c_0101_1’: Mod(-x, x^2 - x - 1),
’c_0101_2’: Mod(-x, x^2 - x - 1),
’c_0101_3’: Mod(x, x^2 - x - 1),
’c_0101_4’: 1,
’c_0110_0’: Mod(-x, x^2 - x - 1),
. # We shall not display them all

Note that each variable is a polynomial (here either 1, -1, x or −x) in x, where x is any
zero of the irreducible polynomial p(x) = x2 − x − 1. Since deg(p) = 2, this component
has two solutions. One can compute the polynomials p as follows:
>>> Sols0_0.number_field()
x^2 - x - 1 # 2 solutions
>>> Sols0_1.number_field()
x^6 - x^5 - 29*x^4 - 50*x^3 - 11*x^2 - 8*x - 1 # 6 solutions
>>> Sols0_1[’c_0011_2’]
Mod(63/2477*x^5 - 53/2477*x^4 - 2032/2477*x^3 - 3158/2477*x^2 +
3917/2477*x + 1140/2477, x^6 - x^5 - 29*x^4 - 50*x^3
- 11*x^2 - 8*x - 1) # The value of c_0011_2 in terms of a root of p.

You can also load the solutions from a precomputed database.
>>> Sols1=Var1.retrieve_solutions()

8 CHRISTIAN ZICKERT

>>> len(Sols1)
1 # 1 component in obstruction class 1
>>> Sols1_0=Sols1[0]
>>> Sols1_0.number_field()
... x^8 - 3*x^7 + 4*x^6 + 5*x^5 - 16*x^4 - 4*x^3 + 10*x^2 + 6*x + 1
As mentioned earlier, each solution gives rise to a solution to the gluing equations. One
can thus compute both shapes (cross-ratios) and volumes.
>>> Sols0_0.cross_ratios()
{’z_0000_0’: Mod(x - 1, x^2 - x - 1), # value of shape 0 in terms of p.
’z_0000_1’: Mod(x - 1, x^2 - x - 1), # value of shape 1 in terms of p.
’z_0000_2’: Mod(x, x^2 - x - 1),
’z_0000_3’: Mod(x, x^2 - x - 1),
’z_0000_4’: Mod(-x + 2, x^2 - x - 1),

. # some more stuff that we shall not need.
. }

>>> Sols1_0.volume_numerical()
[-2.30697456855596 E-15,
2.07693795813790 E-16,
2.19377776286726 E-15,
2.67324665421574 E-14,
1.92953212086467,
-1.92953212086467,
-3.50891718707666,
3.50891718707666]

Often, one is primarily interested in the polynomial defining each component, and the
set of volumes.

Example 2.19. This example summarizes the previous one.
SnapPy
>>> M=Manifold(’m098’);
>>> AllSols=M.ptolemy_variety(2,’all’).retrieve_solutions();
>>> AllSols.number_field() # Gives a nested list
[[x^2 - x - 1, x^6 - x^5 - 29*x^4 - 50*x^3 - 11*x^2 - 8*x - 1],
[x^8 - 3*x^7 + 4*x^6 + 5*x^5 - 16*x^4 - 4*x^3 + 10*x^2 + 6*x + 1]]

>>> AllVols=AllSols.volume_numerical(drop_negative_vols=True)
[[[5.81775636930214 E-15, 1.88266550875941 E-14],
[-5.81964550493112 E-15,
-1.54512291991702 E-15,
7.59661101682800 E-15,
4.79701633678885 E-15,
2.99994042065713]],

[[-2.30697456855596 E-15,
2.07693795813790 E-16,
2.19377776286726 E-15,

3-MANIFOLDS, TRIANGULATIONS, AND VOLUME COMPUTATIONS PROJECT DESCRIPTION 9

2.67324665421574 E-14,
1.92953212086467,
3.50891718707666]]]

>>> AllVols.flatten(depth=2); # gives a single list

Remark 2.20. Real zeros of p give volume 0, and complex conjugate pairs of zeros give
volumes differing by a sign.

2.3.1. Representations in PGL(n,C). One also has Ptolemy coordinates for representa-
tions in PGL(n,C) for n > 2. Note that this can be very slow.

Example 2.21.
SnapPy
>>> M=Manifold(’m015’);
>>> AllSols=M.ptolemy_variety(3,’all’).retrieve_solutions().flatten(depth=2);
>>> len(AllSols)
5 # 5 components of solutions.
>>> AllSols.number_field()
[x^3 + 3*x^2 + 2*x - 1,
x^4 + x^3 + x^2 - 24*x + 16,
x^6 - 1/4*x^5 + 1/8*x^4 - 17/64*x^3 + 9/64*x^2 - 1/32*x + 1/64,
x^4 + 4*x^3 + 5*x^2 + 2*x + 1,
x^6 + 3*x^5 + 10*x^4 - 5*x^3 - 2*x^2 - x + 1]

>>> AllSols.volume_numerical(drop_negative_vols=True);
[[3.58997794036132 E-38, 11.3124883533231],
[0.E-37, 0.E-37, -1.11671963328117 E-37, 1.11671963328117 E-37],
[6.33266664249925,
5.87747175411144 E-39,
-5.87747175411144 E-39,
6.33266664249925],

[-2.35098870164458 E-38,
2.35098870164458 E-38,
4.40810381558358 E-38,
-4.40810381558358 E-38],

[3.17729327860032,
-7.61132592157431 E-37,
7.61132592157431 E-37,
3.17729327860032]]

2.4. Number fields and Neumann’s conjecture. This section contains the heart of
the project.

Definition 2.22. A number field is a finite field extension of Q. A concrete number field
is a number field, which is a subfield of C.

Every number field F is isomorphic to Q[x]/〈p〉, where p is an irreducible polynomial,
and every root α of p determines an embedding of F in C with image equal to the concrete
number field Q(α).

10 CHRISTIAN ZICKERT

Remark 2.23. A number field is not uniquely determined by p. For example, x2 − 5
and x2 + x − 1 both determine the number field Q(

√
5). Given an arbitrary irreducible

polynomial, PariGP can compute a “simpler” polynomial defining the same number field.
Pari/GP
>>> polredabs(x^4+4*x^3-2*x^2+x+1)
x^4 - x^3 - 2*x + 1 # the two polynomials define the same number field.
The simplified polynomial is “canonical” in the sense that p and q define isomorphic
number fields if and only if the reduced polynomials are the same. It is not truely
canonical, though. There are other simplification algorithms giving different polynomials,
which are also “canonical” in the above sense.

Theorem 2.24. If z1, . . . , zn is the geometric solutions to the gluing equation, the field
Q(z1, . . . , zn) is a number field.

As the examples, 2.19 and 2.21 show, this is typically true for other solutions as well,
but not always.

Example 2.25.
SnapPy
>>> Manifold(’m135’).ptolemy_variety(2,4).retrieve_solutions()
[NonZeroDimensionalComponent(dimension = 1)]
Obstruction class 4 has a component not defined over a number field.

Definition 2.26. The concrete number field corresponding to the geometric solution is
called the shape field.

Example 2.27.
SnapPy
>>> M=Manifold(’9_5’);
>>> M.save(’TriangulationFiles/%s.trig’ % M.name()); # saves files as 9_5.trig
Snap
>>> read file TriangulationFiles/9_5.trig
>>> compute shape
Shape field: x^11-x^10+6*x^9-5*x^8+12*x^7-8*x^6+8*x^5-3*x^4+x^3+x^2+2*x-1
[1,5] -2835434699687 R(-5) = 0.239882509-1.50375813*I

Root of geometric solution = 0.239882509-1.50375813*I.

Remark 2.28. Unlike the Ptolemy module, Snap computes numerically, and approxi-
mates with an exact solution. If the shape field has high degree, one needs to set the
degree and the precision. We shall only care about low degree fields. Snap internally
uses the polredabs command (see Remark 2.23, so if two polynomials are the same,
the number fields are isomorphic (although, they may differ as concrete number fields,
c.f. Exercise 2.33).

Remark 2.29. Unfortunately, many functionalities of Snap are not yet part of SnapPy,
and Snap does not come with a Python interface. To do scripting you thus need to open
Snap as its own process, and write your own regular expressions to parse the output. I
trust that you can figure this out on your own. Alternatively, one can use Sage, but this is

3-MANIFOLDS, TRIANGULATIONS, AND VOLUME COMPUTATIONS PROJECT DESCRIPTION11

much slower and not recommended (see http://www.math.uic.edu/t3m/SnapPy/snap.
html). Note that Sage uses a different simplification algorithm, so the polynomial given
will not in general agree with the one coming from Snap.

Conjecture 2.30 (Neumann). Every concrete number field which is not a subfield of R
is the shape field of a hyperbolic manifold.

Exercise 2.31. Compute the shape fields of all census manifolds.

Exercise 2.32. Show that the only manifolds in OrientableCuspedCensus with shape
field Q(

√
−2) are

v2787, v2788, v2789.

In contrast, there are many manifolds with shape field Q(
√
−1) and Q(

√
−3).

Exercise 2.33. Find an example of 2 census manifolds, where the shape fields are equal
as abstract number fields, but distinct as concrete number fields (i.e. examples where the
polynomials are the same, but the roots determining the geometric solution are different).

Exercise 2.34. Make a list of number fields (sorted by degree of p) that arise as shape
fields of census manifolds (ignore fields of degree larger than 8). The list should contain
the set of all manifolds with a given field, and should distinguish between distinct concrete
number fields. How many fields are there of degree 2, 3, 4, etc.?

Conjecture 2.35 (Neumann’s conjecture). The volume of a representation is an integral
linear combination of volumes of hyperbolic manifolds. More generally, the volume of a
representation defined over a number field F is an integral linear combination of volumes
of hyperbolic manifolds with shape field contained in F .

Remark 2.36. This wild conjecture was formulated only recently, so there is currently
not much literature about it (see [5] and [3]).

Example 2.37. SnapPy
>>> M=Manifold(’10_155’)
>>> M.ptolemy_variety(2,’all’).retrieve_solutions().number_field()
[[x^4 - 5*x^3 + 3*x^2 - 3*x + 5],
[x^4 + 3*x^3 + 2*x^2 - 3*x + 1,
x^4 + x^3 + 2*x^2 - x + 1,
x^4 + x^3 - 3*x^2 - 6*x - 4,
x^4 + x^3 - x^2 - x + 1]]

>>> Sols=M.ptolemy_variety(2,’all’).retrieve_solutions();
>>> Vols=Sols.volume_numerical(drop_negative_vols=True)
[[[1.32099016885775 E-15, -1.23348777488109 E-14, 2.52741847731609]],
[[4.05976642563861, 4.05976642563862],
[4.88975905279037 E-38,
-4.88975905279037 E-38,
-1.00437481596434 E-37,
1.00437481596434 E-37],

[-4.05078705499027 E-15,

http://www.math.uic.edu/t3m/SnapPy/snap.html
http://www.math.uic.edu/t3m/SnapPy/snap.html

12 CHRISTIAN ZICKERT

-4.05078705499027 E-15,
-2.77371389268652 E-38,
1.65452736260517 E-38],

[1.13100876173487, 9.25054161301209]]]
The 4 non-zero volumes thus come from representations defined over the fields given

by

x4 − 5x3 + 3x2 − 3x+ 5, x4 + 3x3 + 2x2 − 3x+ 1, x4 + x3 − x2 − x+ 1.

To compare the number fields with the shape fields returned by Snap, we need to simplify:
Pari/GP
>>> polredabs(x^4 - 5*x^3 + 3*x^2 - 3*x + 5)
x^4 - x^3 + x^2 + x - 1)
>>> polredabs(x^4 + 3*x^3 + 2*x^2 - 3*x + 1)
x^4 - x^3 - x^2 - 2*x + 4
>>> polredabs(x^4 + x^3 - x^2 - x + 1)
x^4 - x^3 - x^2 + x + 1
Using the tools explained above, one can check (do this!) that the manifolds m155 and
v1181 have shape fields defined by p1(x) = x4 − x3 + x2 + x− 1, and that we have

Vol(m155) = 3.79112771597413..., Vol(v1181) = 5.05483695463218...

It is now easy to check that

2.52741847731609 ≈ 2Vol(v1181)− 2Vol(m155)

in agreement with Neumann’s conjecture.
There are no manifolds in OrientableCuspedCensus with shape field defined by

p2(x) = x4 − x3 − x2 − 2x+ 4.

However, the number field determined by p2(x) has 3 proper subfields:
Pari/GP
>>> nf=nfinit(x^4 - x^3 - x^2 - 2*x + 4) \\ initializes number field for p_2
>>> nfsubfields(nf)
[[x - 1, 1], [x^2 - x + 1, -1/2*x^3 - 1/2*x^2 + 1/2*x + 2],
[x^2 - x + 2, x^3 - 2], [x^2 - x - 5, -1/2*x^3 + 1/2*x^2 + 3/2*x + 1],
[x^4 - x^3 - x^2 - 2*x + 4, x]]
3 proper subfields (the first and last are Q and the field itself).

From this it follows that the number field equals Q(
√
−3,
√
−7). Using Example 2.12 we

observe that
4.05976642563861 ≈ 2Vol(m004).

Next, one checks (do this!) that e.g. 10_155 and v3461 have shape fields defined by

p3(x) = x4 − x3 − x2 + x+ 1,

and that we have

(2.12) 1.13100876173487 = 3Vol(10155)− 4Vol(v3461).

Finally, the last volume is just the volume of 10_155 itself.

3-MANIFOLDS, TRIANGULATIONS, AND VOLUME COMPUTATIONS PROJECT DESCRIPTION13

2.5. Looking systematically for examples. One of the major goals of the project
is to write new software tools that systematically searches for examples of Neumann’s
conjecture as in Example 2.37. The main obstacles in doing so are:

(1) There are a lot more hyperbolic manifolds than those in the censuses, so a volume
might be realized by manifolds that are not census manifolds.
Solution: Create a large new census of manifolds with shape field of small degree
(see Section 2.5.1).

(2) A representation may be defined over a number field F of large degree. If so, it
is unlikely that even after enlarging the search space, that we can find enough
hyperbolic manifolds with shape field contained in F .
Solution: Restrict to representations with small degree (see Section 2.5.2).

(3) The set of volumes is huge, so searching among all manifolds is completely infea-
sible.
Solution: Restrict to manifolds with shape field contained in F , and use tools
available in Pari/GP (see Section 2.5.3).

2.5.1. Dehn surgery. One can obtain new manifolds from the census manifolds by a pro-
cess called Dehn surgery. We shall not attempt to understand this process. Just think of
it as a way of creating new manifolds from old ones. Each census manifold has a number
of cusps and we refer to the process as “filling the cusps”.

Example 2.38. SnapPy
>>> M=Manifold(’m084’);N=Manifold(’m292’);
>>> [M.num_cusps(),N.num_cusps()]
[1,2] # M has 1 cusps, N has 2 cusps
>>> M
m084(0,0)
>>> N
m292(0,0)(0,0)

The number of cusps is the number of parantheses with zeros. For each cusp, the zeros
can be replaced by a pair (p, q) of relatively prime integers.
>>> N.dehn_fill([(1,4),(2,3)])
>>> N
m292(1,4)(2,3)
>>> N.volume()
3.1472791248
>>> N.dehnfill([(1,2),(0,0)]) # leaves second cusp unfilled.

Each Dehn filling gives rise to a new manifold. If all cusps have been filled we say that
the manifold is closed. The SnapPy census OrientableClosedCensus is a list of closed
manifolds with small volumes obtained by fillings. We want instead a census of manifolds
with small shape fields.

Exercise 2.39. Consider the manifold m015. Create triangulation files for all possible
Dehn surgeries with coefficients (p, q) relatively prime with −16 ≤ p ≤ 16, 1 ≤ q ≤ 16.
How many of these have shape field of degree ≤ 8.

14 CHRISTIAN ZICKERT

Exercise 2.40. Create a large census of manifolds with shape fields of degree≤ 8 obtained
by Dehn surgeries on census manifolds. In practice one rarely gets low degree shape fields
if the Dehn surgery coefficients are larger than, say 16. This will require a lot of CPU
time, so we will have computers working on this 24/7.

2.5.2. Representations with low degree number fields. The second obstacle is easy to over-
come. We just restrict to the representations that are defined over number fields of degree
≤ 12.

Exercise 2.41. Create a list of all representations of census manifolds defined over num-
ber fields of degree ≤ 12 (using the retrieve.solutions command). Do this also for
representations in PGL(3,C) (see Example 2.21).

2.5.3. Searching for dependence relations. Pari/GP has built in methods for searching for
dependence relations.

Example 2.42. Pari/GP
>>> x0=1;x1=sqrt(2);x2=sqrt(3);x3=sqrt(6);
>>> x=0.60039830998148144005591988409615526336;
>>> lindep([x0,x1,x2,x3,x])
[-1, 1, -2, 1, 1]~ # -x0+x1-2*x2+x3+x=0
>>> x=Pi;
>>> lindep([x0,x1,x2,x3,x])
[78989, -355797, 589666, -1195843, 742317]~

Gives an approximation of Pi as a rational
linear combination of x0,x1,x2, and x3.

If the coefficients are large, like in the second case, the approximation is unlikely to be
exact.

Example 2.43. Let’s find the linear combination in the last part of Example 2.37:
SnapPy
>>> M=Manifold(’10_155’);
>>> pari.set_real_precision(100); # sets the precision to 100 digits
>>> sols1=M.ptolemy_variety(2,1).retrieve_solutions();
>>> sols1[3].volume_numerical()[0]
1.131008761734869776519177451057897808145902298939429154355
638058519040237736040105181777189590804222
>>> sols1[3].volume_numerical()[3]
9.250541613012098776688797885254060095679416759181827490495
550912731820047801992282273540023416857780
>>> ManifoldHP(v3461).volume() # HP stands for high precision.
6.655154019325356638386804051176070619723086994651513329282753670
Pari/GP
>>> lindep([1.131008761734869776519177451057897808145902298939429154355
... 638058519040237736040105181777189590804222,9.25054161301209

87766887978852540600956794167591818274904955509127318200478
01992282273540023416857780,6.655154019325356638386804051176

3-MANIFOLDS, TRIANGULATIONS, AND VOLUME COMPUTATIONS PROJECT DESCRIPTION15

070619723086994651513329282753670])
[-1, 3, -4]~
This is a very strong indication (but of course no proof), that (2.12) holds.

2.5.4. Strategy of investigation. Our strategy for investigating Neumann’s conjecture is
the following:

(1) Create a large census C of manifolds with shape fields of small degree. Compute
their volume to high precision.

(2) For each manifold M for which the Ptolemy varieties have been computed (all
manifolds in OrientableCuspedCensus, almost all manifolds in LinkExteriors
and a lot of manifolds in HTLinkExteriors carry out the following steps:
• For all small degree representations, compute all volumes to high precision.
• Simplify each polynomial, and check if the simplified polynomial p appears
the census C. If it does, run lindep on the set of manifolds with shape field
given by p (many manifolds will have the same volume; ignore duplicates).
• If it does not, check if F has any subfields in C. If so, run lindep on those.
If not, continue with the next volume.

(3) Create a list of all examples found this way.

Exercise 2.44. Implement the above.

Remark 2.45. A systematic search like this has never been done before, so with a bit of
luck we will discover lots of new and interesting patterns!!

2.6. General SnapPy tips.

2.6.1. Tab completion and help. Tab completion gives a list of available commands.

Example 2.46. SnapPy
>>> M=Manifold(’m004’);
>>> M. # type tab
M.DT_code
M.LE
M.browse
M.canonize
M.chern_simons
M.clear_cache
M.complex_volume
M.copy
M.cover
M.cover_info
. # We shall not display all

To get an explanation for the various commands available, type ?
>>> M.dehn_fill? # Gives explanation.
>>> PtVars=M.ptolemy_variety(2,’all’);
>>> Var0=PtVars[0]
>>> Var0? # Gives explanation.

16 CHRISTIAN ZICKERT

2.6.2. Basic scripting syntax. SnapPy is a Python interpreter, and thus allows for easy
scripting.

Example 2.47. SnapPy
>>> for M in OrientableCuspedCensus(tets=6,cusps=2):
... if M.volume()<5:

print (M,M.volume())
(s441(0,0)(0,0), 4.7517019655)
(s443(0,0)(0,0), 4.75170196552)
(s503(0,0)(0,0), 4.8937641326)
(s506(0,0)(0,0), 4.8937641326)
(s548(0,0)(0,0), 4.97677029426)
(s549(0,0)(0,0), 4.9767702943)

2.6.3. Precision. One can get higher precision using ManifoldHP.

Example 2.48. >>> M=ManifoldHP(’m032’);
>>> M.volume()
3.163963228883143983991014715973154484812787671518115266582922442
>>> M.dehn_fill([(2,3)]
>>> M.volume()
2.758620160778890957917791566118727309249970284231462302580396078

When working with the Ptolemy module, one changes the precision with the command
pari.set_precision(n), where n is the number of digits (see Example 2.43).

References

[1] Riccardo Benedetti and Carlo Petronio. Lectures on hyperbolic geometry. Universitext. Springer-
Verlag, Berlin, 1992.

[2] Stavros Garoufalidis, Matthias Goerner, and Christian K. Zickert. The Ptolemy field of 3-manifold
representations. arXiv:1401.5542, Preprint 2014.

[3] Stavros Garoufalidis, Dylan P. Thurston, and Christian K. Zickert. The complex volume of SL(n,C)-
representations of 3-manifolds. ArXiv:math.GT/1111.2828, 2011.

[4] Colin Maclachlan and AlanW. Reid. The arithmetic of hyperbolic 3-manifolds, volume 219 of Graduate
Texts in Mathematics. Springer-Verlag, New York, 2003.

[5] Walter D. Neumann. Realizing arithmetic invariants of hyperbolic 3-manifolds. In Interactions between
hyperbolic geometry, quantum topology and number theory, volume 541 of Contemp. Math., pages 233–
246. Amer. Math. Soc., Providence, RI, 2011.

[6] Jeffrey R. Weeks. Computation of hyperbolic structures in knot theory, 2003.

	1. In brief
	2. Background, examples, and plan of action
	2.1. Basics of triangulations
	2.2. Gluing equations and volume
	2.3. Ptolemy coordinates
	2.4. Number fields and Neumann's conjecture
	2.5. Looking systematically for examples
	2.6. General SnapPy tips

	References

